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FORMATION OF A GAS BUBBLE ON A VIBRATING CAPILLARY 

IMMERSED IN A LIQUID 

I. S. Grachev, D. T. Kokorev,* 
and V. F. Yudaev 

UDC 532.529.6 

The formation of a train of bubbles in a low-viscosity liquid is investigated. The 
dependence of the gas flow rate during formation of the bubble train on the vibra- 
tional acceleration of the capillary is determined. 

One of the techniques used to intensify mass transfer at a liquid--gas or liquid--liquid 
interface is to disperse one of the phases by means of a vibrating nozzle or macrocapillary 
(bubbling, dispersion, etc.). This technique enables one to control the particle size of the 
dispersed phase over a wide range and to increase the relative velocity of the interacting 
phases. In the present study we attempt to formulate a fluid-mechanical description of the 
formation of a single gas bubble on a vibrating macrocapillary immersed in a liquid. 

To derive the bubble-growth equation we assume that: I) the surface-tension forces im- 
part a spherical shape to the bubble; 2) prior to breakoff the bubble remains rigidly con- 
nected to the capillary, which vibrates in a vertical plane according to a harmonic law. In 
the direction of the vertical axis, therefore, the center of the growing bubble is simulta- 
neously involved in two motions, one reciprocating A sin mt and the other translational R(t) 
due to its own growth (Fig. la), such that 

z = R ( t ) +  A sino)t. (1) 

The v e l o c i t y  of the center of the bubble is  

U =  __dz = - - d R  +A~cos~t .  (2) 
dt dt 

The v e l o c i t y  p o t e n t i a l  of the  l i q u i d  sur rounding  the  growing s p h e r i c a l  bubble i s  w r i t t e n  as 
follows [i]: 
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Fig. i. Diagram for derivation of the growth equa- 
tion for a spherical bubble on a vertically vibrat- 
ing capillary (a), bubble-train formation (b), 
and illustration of buddble formation in a train (c). 

( 1 ) -  R 2 dR URa cosO. (3) 
r dt 2r 2 

We use the Bernoulli equation and determine the pressure at an arbitrary point of the 
liquid : 

P ~ _ ( O q ) )  q~ PA 
p -or-- + i g ( h - - A s i n o ) t - - x ) .  (4) 

-,',u 2 p 

In calculating (3~/3t)x,y it must be borne in mind that 

{ O0 ~ U sinO; ( O r )  . . . . .  - -UcosO.  (5) 
ot Jx.~ r -07 .,~ 

The absolute velocity q of the liquid is given by the expression 

e =  ( o .  o .  
\ 7 ~ - /  ' \ or ] "  

We f i n d  t he  p r e s s u r e  e x e r t e d  by the  l i q u i d  on t he  s u r f a c e  o f  t he  b u b b l e :  

Pn _ 3 dR )2 d2R , dR + R  
p 2 dt / + R  ~ - - - c  3U dt dt ] 2 

U 2 PA 
-i--8- (19COS 2 @ - 7 )  ~ +g(h--Asino~t--x).  

P 

- - +  

The bubble is therefore acted upon by a lifting force 

f p = -- l' 2nR~P~ sin @ cos O dO. 

From Eqs. (7) and (8) we obtain 

Fp 4 2 d (UR 3) 
- ~ R a ~ - - - - n -  

p 3 - ~  3 dt 

Two other forces besides Fp act on the bubble: 

i) viscous drag 

Fu=6~RU;  

(6) 

(7) 

(8) 

(9) 

(lo) 
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2) the force binding the bubble to the capillary 

F~ = 2nRo a. (ii) 

The growing bubble obeys the relation 

Fp=F~-+-F o. (12) 

Substituting expressions (9), (i0), and (ii) into (12), we obtain the total differential equa- 
tion 

d2R + 3 ( dR ) 2 d r  --Y- R . - - -~  +_~3 (Aocosot + ~ _  93~)dR__~ ~ 3R0 apR 3 ~ 9 ~ _ A ~ c o s o t _ A J s i n o t _ 2 g = O , ( 1 3  ~ 

which  d e s c r i b e s  t h e  g rowth  o f  a s p h e r i c a l  b u b b l e  on a v e r t i c a l l y  v i b r a t i n g  c a p i l l a r y  immersed 
i n  a l i q u i d .  The s o l u t i o n  o f  Eq. (13) makes i t  p o s s i b l e  to  d e t e r m i n e  t h e  b u b b l e  r a d i u s  R ( t ) ,  
t h e  c o n t a c t  s u r f a c e  S ( t )  o f  t h e  p h a s e s ,  t h e  r a t e  of  change  d S ( t ) / d t  of  t h a t  s u r f a c e ,  and t h e  
r e l a t i v e  v e l o c i t y  U o f  t h e  p h a s e s  a t  any t im e  d u r i n g  g rowth  o f  t h e  b u b b l e .  

I n  a s p e c i a l  c a s e  we c o n s i d e r  t h e  b r e a k o f f  of  t h e  b u b b l e  f rom t h e  c a p i l l a r y ,  a t  which  
time it ceases to grow, i.e., 

R = a ;  t : = T ;  dR _ 0; --d2R = O. 
dt dt 2 

Equation (13) takes the form 

3Ro~ 9~t AocosoT+Ao2s inoT+2g=O" (14) 
9a 3 pa 2 

According to the data of [2], the breakoff of a bubble from a vibrating capillary im- 
mersed in a low-viscosity liquid takes place at the instant that the capillary moves from 
the uppermost point of its motion to static equilibrium with the vibration phase 

c o T = ( 4 k + l )  ~ ( k = 0 ,  t, 2 . . . .  ). (15) 

Substituting the breakoff condition (15) into Eq. (14), we obtain 

o3 = 3Roo �9 (16) 
p (2g + A~ 2) 

If, all other conditions being equal, the capillary is at rest, we readily discern that 

Dividing (17) by (16), we have 

ao3_ 3Ro~ (17) 
2pg 

a~ V 0 A ~  2 
a 3 - -  V - -  1 +  ~ - ,  ( 1 8 )  

in agreement with the results obtained in [2] for a spherical bubble. 

In addition to the three main observable regimes of bubble formation [2] (nonsteady bub- 
ble shape, fan-spraying of the gas, and steady bubble shape), there is a transition regime 
from a nonsteady bubble shape to fan-spraying of the gas; this regime is called bubble-train 
formation. In the latter (Fig. ib) we observe the continuous formation of bubbles, each one 
moving in the wake of the one preceding it and separated therefrom by a film of the liquid 
phase. We now determine the relationship between the main parameters of the investigated 
system in the transition (bubble-train) regime. A spherical bubble formed in a low-viscosity 
liquid breaks off at the instant that the capillary is situated at the uppermost point of its 
path (15), so that its radius is determined by expression (16). The motion of a bubble in a 
low-viscosity liquid is described by the equation [3] 
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Fig. 2. Relative gas flow rate during bub- 
ble-train formation versus amplitude and 
frequency of vibrating capillary, i) The- 
oretical relation (25); 2) experimental at 
20 Hz; 3) same at 40 Hz; 4) 60; 5) 80; 6) 
i00; 7) 120; 8) 140; 9) 160 Hz. 

d2x 
- -  = 2g,  

dt  2 

which under the initial conditions 

= 0 ;  x I t = o = O  
dt  ]t=o 

has the solution 

X = ~2. 

The distance from the tip of the capillary to the base of the detached bubble at time t is 
equal to (Fig. ic) 

z = x + A sin cot = gt  2 + A sin cot. (19) 

The condition for formation of a bubble train (Fig. ib) is 

z = 2 a  ~ r  t = T ,  

w h i c h  m u s t  b e  s a t i s f i e d  t o g e t h e r  w i t h  t h e  b u b b l e  b r e a k o f f  c o n d i t i o n  ( 1 5 ) .  
and (20)  we o b t a i n  

(20) 

From (19), (15), 

g T  2 
a - -  

2 

Assuming that the gas flow rate in the bubble-train regime is constant, we have 

(21) 

4 - -  ~a  3 = QT.  
3 

Solving the system (16), (21), (22) for Q, we find 

(22)  

5 Q- 892~ [, 3~0~ ]Y 
9 p (2g @ Am 2) 

(23) 
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For Am = 0 (capillary at rest) 

Q o -  9 29---'~ " 

Dividing (24) by (23), we finally obtain 

(24) 

Q - 2g / (25) 

The latter expression shows that when a capillary having a given radius is set into 
vibration a train of gas bubbles begins to form at much lower gas flow rates. The solution 
(25) is supported by experimental data obtained on an apparatus described and illustrated 
in [2]. Air and distilled water were used for the gas and liquid. A comparison of the the- 
oretical and experimental data (Fig. 2) shows that the model of a "rigid" spherical bubble 
can be used under the given conditions in the frequency interval from 20 to 80 Hz (curves 
2-5). At other frequencies we observe qualitative agreement in the process of formation of 
gas bubbles on a capillary immersed in a liquid and executing vertical harmonic vibrations. 

NOTATION 

A, ~, amplitude and cyclic frequency of capillary vibrations; t, time; R, variable ra- 
dius of growing bubble; z, coordinate of bubble center; U, velocity of bubble center; ~, 
velocity potential of liquid; r, O, spherical coordinates; Pr, pressure of liquid at point 
with radius-vector r; PA, atmospheric pressure; 0, density of liquid; q, absolute velocity 
of liquid; h, immersion depth of capillary at equilibrium position; x, y, coordinates of 
fixed reference system; Fp, lift force on bubble; F~, viscous drag force; Fo, bubble--capil- 
lary binding force; ~, dynamic viscosity coefficient; ~, surface-tension coefficient; Ro, 
radius of vibrating capillary; g, acceleration of gravity; T, bubble-formation period; a, 
ao, radii of detached bubble for vibrating and nonmoving capillaries; V, Vo, volumes of 
detached bubble for vibrating and nonmoving capillaries; Q, Qo, gas flow rates through 
vibrating and nonmoving capillaries. 

LITERATURE CITED 

i. H.L. Lamb, Hydrodynamics, Macmillan, London (1932). 
2. I.S. Grachev, D. T. Kokorev, and V. F. Yudaev,lnzh.-Fiz. Zh., 25, No. 3 (1973). 
3. D.J. McCann and G. H. Prince, Chem. Eng. Sci., 2-5, 801-895 (1969). 

438 


